
AN OVERVIEW OF VERY HIGH LEVEL SOFTWARE DESIGN METHODS

Maryam Asdjodi and James W. Hooper
Computer Science Department

The University of Alabama in Huntsville
Huntsville, Alabama, 35899

ABSTRACT

Very High Level design methods emphasize automatic transfer
of requirements to formal design specifications, and/or may
concentrate on automatic transformation of formal design
specifications that include some semantic information of the
system into machine executable form.

Very high level design methods range from general domain
independent methods to approaches implementable for specific
applications or domains. Applying AI techniques, abstract
programming methods, domain heuristics, software engineering
tools, library-based programming and other methods different
approaches for higher level software design are being developed.
Though one finds that a given approach does not always fall
exactly in any specific class, this paper provides a
classification for very high level design methods including
examples for each class. These methods are analyzed and compared
based on their basic approaches, strengths and feasibility for
future expansion toward automatic development of software
systems.

INTRODUCTION

Automatic programming is one of the long range goals of
computer science research. Understanding the natural language
interface, converting the specifications in natural language to
formal design specifications, and developing implementations are
constituent components of automatic programming (21 . Natural
language understanding has been an evolutionary process. In its
actual implementation, automatic programming always is viewed as
substitution of a higher level language for specifying a system
to a machine for the languages that are presently available
[141. In order to avoid ambiguity and make the problem
manageable, a limited set of vocabulary and interpretation rules
are used for the machine interface. Compilers are among the
primary tools that improved software specification and
introduced basic generic and reusable programming concepts
(e-g. , loop structures). They allowed higher level
specifications than what a machine by its nature was designed to
understand. Specification of a software system in a high level
language, should be based on specific syntactic rules (BNF) of
the language. Compilers are designed to verify software
specification (i.e. program) correctness by detecting mainly the

131

syntactic errors of the implementation and to develop executable
specifications (i.e. machine code) for correct programs.
Syntactic errors are not the only inaccuracy of programs.
Logical and semantic errors result in a larger class of faulty
programs. Semantic information includes the definition of
objects, relations, rules, and algorithmic concepts that are
used for describing the system. Errors related to these
interpretations usually are referred to as semantic errors 1131.
Semantic errors result from misrepresentation or
misunderstanding of the meaning of the requirements or design
parameters. Compilers for high level languages such as FORTRAN
detect few of these errors.

Very high level (VHL) design methods are being developed by
moving up toward greater abstraction of specifications and
automatic software generation by relaxing syntactic rules of high
level languages, and/or including more semantic information in
design specifications. The designer's knowledge about the real
system is represented by different methods. Object-oriented
programming incorporates a view of real-life entities in terms
of their functions and relations with other entities. Logic-based
programming models a system in terms of logical statements and
assertions. Application of artificial intelligence methods for
designing software systems is recommended for use by software
engineers [17, 201. Transformation techniques are used for
converting VHL design specifications into implementations.
Knowledge-based systems are used for defining an application
domain to a computer. What is common in all of these approaches
is the necessity of more generic and adaptable constructs for VHL
specification of a software system. These reusable aspects of
VHL design tools range from standard methodology and control
structures of design to generic objects and library components.
The next section provides a review of VHL design methods and
their approach to reusability.

CLASSIFICATION OF APPLICATION

The design of a software system refers to specification of
its algorithmic concepts, data structures, functional components,
and interfaces between these components [12]. It is the most
important and crucial phase of the software life cycle.
Adaptable and more abstract designs, when automatically
transformed to implementation in high level languages, release
the software system designer from dealing directly with the
syntax of programming languages, resulting in more reliable
implementations. Different VHL design approaches emphasize
reusability of specification, structure, and methodology of the
software design, in a different level. They range from efforts
to develop generalized structural design methods for transforming
informal requirements of problems to formal design specification,
to approaches for implementing predefined design elements.
Although VHL design approaches are very diverse, they are
grouped in the following categories with respect to their major
approaches.
132

- General approaches. - Software engineering approaches. - Program transformation approach. - Component composition approach. - Application-oriented Methods. - Knowledge-based approach. - Application language approach. - Object-oriented programming.
GENERAL APPROACHES

General VHL design methods provide means for designing a
system by applying design languages, environments and tools that
are independent of the application domain. General VHL design
methods allow more validation of specification of designs by
implementing general programming and software design knowledge
for developing VHL specifications and transforming them to
software. In most cases logical, functional, or relational
design approaches are enforced by general VHL design methods.
Generally these systems are interactive and no knowledge of any
application field is required. The following subsections
describe classes of approaches in this category.

Software Engineering Approaches

Software engineering emphasizes systematic development of
software systems. Complete development of life cycle phases,
including requirements, design, implementation, testing and
maintenance, as well as traceability between these phases, is
encouraged. Design tools are developed to enforce a uniform
structure for specifying the system design, that can be traced up
to requirements and down to implementations. Design tools are
usually supported by standard methodologies for designing a
system, by means of very high level design languages, menus,
tables, and graphic notations. Some software engineering tools
specify a system in terms of objects, and their relationships
and attributes. For each functional component, interface
conditions in terms of data and control flow and relationships
with other components are given. This information is used for
verification and consistency checking and tracing among
components of the design. Generally a specific design and
control structure is enforced by the tool. For example HOS
(Higher Order Software) applies a hierarchical structure [7 1 and
a state-based structure is suggested by Matsumoto [12]. HOS
transfers design specifications represented by the functional
language AXES to programs in high level languages. In HOS each
system is represented by mathematical functions, each function
having a specified domain of inputs and range of outputs. A
control map is used for interface checking among levels of the
functional specifications. Static simulation is used for
verification of specifications, and ,a dynamic simulator provides
means for simulating execution of HOS programs. HOS facilitates
two levels of transformation, from requirements to design and
from design to implementation.

133

Program Transformation Approach

The program transformation method provides for stepwise
refinement and transformation of functional or logical
specifications of a system to the implementation. The methods
used for the refinement of specifications include rule
deduction, theorem proving, and pattern matching. Refinement
methods may result in huge amounts of intermediate results.
Source-to-source transformation rules are used to simplify and
optimize the refinement process. Abstract specifications provide
very high level programs at the root of a refinement tree, and
applying refinement and source-to-source transformation rules,
customized application programs may be provided in a high level
language as the leaves of the tree. This method is also sometimes
called the stepwise refinement method. Program transformation
methods share refinement and transformation methods with
different areas of computer science such as artificial
intelligence, knowledge-based programming, rapid prototyping, and
optimization techniques for compiler construction.

Goldberg [6] has summarized techniques that are applied in
program transformation approaches as follows. Stepwise refinement
rules mainly include folding and unfolding VHL specifications
with the lower level specifications, possibly adding conditions
for clarifying VHL concepts in terms of implementations in a high
level language. Source-to-source transformations applied for
simplification of refinement process including loop optimization,
finite differencing, assertion maintenance, algebric or logical
simplification, and storage efficiency methods.

The stepwise refinement method is used in the CHI system,
[18]. In the CHI system, the language V is used for
specification of the design of the system using logical, very
high level structure. Logical expressions in the V language,
using a pool of generic and instantiated objects, are refined to
the lower level constructs of the V language, and finally to
LISP. Logic assertion compiler and Rule compiler are used for
source-to-source transitions and refinement of specification to
the lower level constructs. A data structure synthesizer is used
to provide a LISP implementation from generic data objects.

Component Composition Approach

Component composition techniques provide for combination
and customization of components from a library of generic
components. A system is designed by invoking and interfacing
library components and reusing predesigned components. Component
composition techniques represent reusable design in its precise
and true sense. Due to the fact that a library should be
searched for the right component, this method also is referred to
as programming by inspection [161. The adaptable components may
be objects representing primitiv2s of the language (e.g., data
structure operations, control facilities), and "modules",
"plans" or "packages" representing more complex components (i . e. ,
134

frequently-applied generic modules). For each component some
information is provided, such as name, description of
functionality, parameters, interface conditions, and rules or
axioms for application. A vocabulary set is required for
communication between the user and the system for recognition of
the library components. Selected components are customized and
instantiated by evaluation of their axioms, interface
conditions, and generic parameters. Usually a system is designed
by decomposition in a top-down fashion to the basic functional
components. In order to design a software system the component
composition method is used in a manner similar to the
bottom-up programming method. Low-level components are
customized and combined to provide more complex components
from which the last one is the software system. In general the
major requirements for implementing this approach include generic
design of components, a library, and customization and
combination methods.

Numerous studies about human factors in algorithm design and
computer programming have suggested that the component
composition methods are very close to the human approach [l, 191.
An example of the component composition approach is presented by
Goguen [5] in the Library Interface Language (LIL). The language
uses very high level generic packages, applying equational logic
expressions. Generic packages satisfy "Theories" for their
input parameters. Theories provide interface conditions and/or
properties of the parameters of the other entities. "Views" show
how a given entity (i.e. a package) satisfies a Theory.
Finally, the instantiation phase binds the formal parameters to
the actual programming language (Ada) data structure. A LIL
program is developed by combining, modifying, and importing,
using packages or some of their parameters.

APPLICATION-ORIENTED METHODS

Application oriented methods apply reusable designs for
producing software systems within a specific application or
domain. Applying the domain-specific analysis and software
design conventions provides for generation of more efficient
software for the domain. Design elements developed in some of
these approaches are adaptable in the sense that they represent
or apply some classes of objects of the domain.

Knowledge-Based Approach

Knowledge-based methods use domain rules and knowledge, in
conjunction with general methods for interpreting the input
specifications of a system, and provide some formal or executable
form of specifications. Domain analysis may be represented in
terms of the software components [ll], methods of generating
them, theories, rules and experimental facts, domain-dependent
refinement rules of specifications, technical names and

135

concepts, and the taxonomy of the domain. This analysis may be
used domain,
for transforming and refining specifications, or for providing
methods for deriving more efficient implementations. Though this
approach also requires some syntax for input description,
requirements are frequently achieved by interactive guidance by
the user, using a domain-dependent vocabulary. A n important
factor about knowledge-based design methods is the role of
heuristics in applying domain knowledge and in designing and
developing systems. This results in a wide variety of approaches
for introducing and applying adaptable designs. A n example is an
automatic software development system for oil drilling purposes,
developed by Schlumberger-Doll Research [3]. The system
originally was a problem solver to develop software for solving
oil well logging problems. Problem specification is given by a
computationally-naive user applying concepts and terms of the
domain. Applying stepwise refinement methods and user-defined
informal specifications, the system produces a formal design and
finally software. Domain knowledge is used for maintaining
classification of problems and solutions, recognizing the class
of input specification, and providing refinement rules to
obtain formal design specifications and implementations.

to provide a library of generic components for the

Application Language Approach

Programming languages use a set of vocabulary and parsing
rules to interpret the design of a software system. Tools like
lexical analyzers, parsers, and interpreters are based on
programming language rules (e.g., BNF), and are used for
transforming high level problem representations to machine level
code. Software systems developed for specific application
domains usually have a set of common concepts including
functions, objects, and even problem analysis. These common
concepts are used in the syntax of application-oriented
languages to allow specifications at a level higher than ordinary
programming languages. Similar techniques to the conventional
language techniques are used for translation of the programs in
application-oriented languages into lower level programs in a
programming language. An example of such languages is the
simulation language SLAM [15]. SLAM accepts simulation programs
and translates them to programs in FORTRAN, and like most other
simulation languages has predefined features such as time
management, arrival distributions, limited-resource management,
and performance data collection. Other examples are graphic
languages (packages) that allow higher level descriptions of
geometric objects.

Object-Oriented Programming

Different programmers approach software design problems
differently. The functional decomposition method emphasizes
actions, while data interaction is used as the primary focus for

136

designing a data-centered system. Considering both approaches
simultaneously, object-oriented programming views a system or a
domain as a collection of objects and their interactions along
with their primary functions (methods). This approach allows
programming in problem domain concepts rather than machine-
oriented programming in terms of variables, memory addresses,
operators and operands. Most software design methods somehow
deal with objects, their related functions and attributes [91 .
Simulation languages come very close to implementing objects and
their functions in the manner of object-oriented programming
(actually the simulation language SIMULA is considered to be one
of the predecessors of the object-oriented languages). The most
common definition of an object is an encapsulated data type which
can only be accessed through its defined functions or methods
[4]. The internal structure of an object is hidden from its users
and its functions provide a shell for it. Usually a "message" is
used to communicate with an object and to request execution of
any of its functions. Most Algol 60 descendant languages that
allow definition of data types have the capability to define
objects. Encapsulation, concurrent message execution, generic
objects, inheritance of objects and methods, libraries of
objects, and graphic user-friendly depiction of objects are among
the built-in features in the recent object-oriented languages.

Though we have classified object-oriented programming as an
application-oriented approach (due to its highly domain dependent
application), conceptually it is a general method for designing
software systems for any domain. The SMALLTALK language and
environment is an integrated system designed on the basis of the
object-oriented approach [lo]. Everything in SMALLTALK is an
object, from numerical types like integers up to entities of the
operating system like windows. It allows concurrent message
execution for objects of a class, and uses automatic garbage
collection for deallocation of resources that may be dynamically
bound by messages and are not referenced any longer.

ASSESSMENT OF VERY HIGH LEVEL DESIGN APPROACHES

Software design methods are evaluated from different
perspectives. Efficiency, reliability, complexity, degree of
automation, and reusability are among the factors that are used
here to assess VHL design technique. Emphasis placed by different
VHL design methods on each of the above factors varies greatly.
Program transformation, in general, requires the user to be
able to apply a logical-based or functional-based language.
The refinement and transformation process of logical or
functional specification is by nature very inefficient [81.
Rule-based refinements require substantial time and storage, and
develop huge intermediate results. Refinement deadlock (an
intermediate result for which there is no refinement) is another
drawback for the program transformation approach. In order to
provide a more user friendly environment for obtaining
specifications from the user, interface languages are used and

137

translated to the logical/functional design language. This
results in a less efficient procedure (compared with other
methods) for implementation of the system. In spite of
implementation inefficiency of logical or functional-based
specifications, the program transformation approach automatically
develops full verified implementations and is best suited for
verification of designs and for rapid prototyping.

The software engineering approach is based on independent
generation and verification of life cycle phases. Specifications
at the requirements level can be traced to the design and
implementation levels. Design tools are used to standardize
design and control structure, and provide reusability of design
methodology and structure. Most design tools emphasize interface
checking and verification of design specification but do not
provide implementation.

Systematic software generation through specification of
systems in life cycle phases has been considered in other
research than the software engineering approach, per se. Program
transformation techniques tend to apply life cycle concepts in
their methodologies. Interface languages in these systems play
the role of requirement languages and provide consistency
checking. On the other hand HOS, one of the very few software
engineering tools that claim automatic software generation,
implements a functional design language and includes some of the
characteristics of the program transformation method. Similar to
the component composition method, HOS applies a library of
modules for generation of software.

Component composition methods provide efficient means for
developing implementations. Considering the degree of reusability
and application of predesigned features, the component
composition method is preferred to the other general design
techniques, especially if combined with knowledge of an
application domain. Another advantage of the component
composition method is that the internal representation of
reusable components can be hidden from the user of these
fragments. For example a logic-based language may be used for
internal implementation of library components, while the user may
use some simple syntax similar to natural language for
implementation and instantiation of these components. As
mentioned above this is not the case for the program
transformation approach. Generic components can be compiled into
machine language and saved in the library. These stand-alone
standard library components are also referred to as "software
ICs" [4] . Like hardware ICs, software ICs can be independently
tested, documented, and used for different applications.
Hardware ICs, as reusable and encapsulated functional units,
have resulted in a revolution for hardware productivity. Though
reusable library components may not result in the same
revolutionary progress, their application is a milestone in the
evolution of the software industry.

138

Application-oriented approaches in general provide more
efficient software for the domain. The interface language
applied for specification of the system is closer to the natural
languages and applies concepts of the domain. Consequently it is
more convenient for users who are familiar with the application
domain. The degree of automation, efficiency, and degree of
reusability of knowledge-based methods depend on the method
used (component composition or program transformation) and the
heuristics applied for representing the knowledge of the domain.
Some of these systems concentrate on reusability of domain
components and improving the productivity of the software
generation process ill]. Others emphasize automation and provide
rule-based deduction for automatic software generation [3] .

Domain language-based design methods allow high level
specifications in terms of domain concepts and have resulted in
much more efficient implementations. The disadvantages of these
languages is their closed view of the application domain. The
sets of domain concepts and interpretations are fixed, and
language interpreters and parsers have a fix understanding of
the domain, which is not extendable. Object-oriented methods,
like domain specific languages, allow programming in terms of
domain concepts, though they are not as efficient as domain
languages. Pure object-oriented programming encapsulates objects,
consequently any higher level function needs to be a combination
of methods of objects. The resulting code usually is not very
efficient and needs optimization.

CONCLUSION

In view of the above comparative analysis, we have become
convinced that the greatest practical leverage for reuse can
come by a combination of the component composition and
application oriented approaches. Component composition methods in
general are capable of supporting development of new and complex
components from the existing library components more efficiently
than other general design methods and can grasp the essence of
object oriented programming (that is, designing software in
terms of domain concepts), and can enhance the approach and
improve its efficiency.

The idea of creation of a single very high level design tool
that develops efficient programs for every application domain
does not seem to be practical. Representation of programming
knowledge in general is not sufficient or efficient for all
application domains. Combination of knowledge of application
domain and component composition approach develops an open
environment for higher level and domain related design of
software systems and is thus a step closer to automatic
programming.

139

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

140

Adelson, B. and E. Soloway. 1985. "The Role of Domain
Experience in Software Design." IEEE Trans. on Software
Engineering, Vol. SE-11, no. 11 (Nov.): 1351-1360.
Barr, A. and E.A. Feigenbaum. 1982. The Handbook of
Artificial Intelligence, Vol. 2. William Kaufman Inc.
Barstow, D.R. 1985. "Domain-specific Automatic Programming."
IEEE Trans. on Software Engineering, Vol. SE-11, no. 11

Cox, B.J. 1986. Object Oriented Programming An Evolutionary
Approach. Addison Wesley.
Goguen, J. and M. Moriconi. 1987. "Formalization in
Programming Environment." Computer, Vol. 20, no. 11 (Nov.):

Goldberg, A.T. 1986. "Knowledge-Based Programming: A Survey
of Program Design and Construction Techniques." IEEE Trans.
on Software Engineering, Vol. SE-12, no. 7 (Jul.): 752-768.
Hamilton, M. and S. Zeldin. 1979. "The Relationship Between
Design and Verification." The Journal of Systems and
Software, Vol. 1, no. 1, 29-56.
Hoare, C.A.R. 1987. "An Overview of Some Formal Methods for
Program Design." Computer, Vol. 20, no. 9 (Sep.): 85-91.
Hooper, J.W. 1985. "BPL: A Set-Based Language for Distributed
System Prototyping." International Journal of Computer and
Information Sciences, Vol. 14, no. 2, 83-103.
Key, A. and A. Goldberg. 1977. "Personal Dynamics Media."
Computer, Vol. 10, no. 4, (Apr.): 31-41.
Lanergan, R.G. and C.A. Grasso. 1984. "Software Engineering
with Reusable Design and Code." IEEE Trans. on Software
Engineering, Vol. SE-10, no. 5 (Sep.): 498-501.
Matsumoto, Y. 1984. "Some Experience in Promoting Reusable
Software: Presenting in Higher Abstract Levels." IEEE Trans.
on Software Engineering, Vol. SE-10, no. 5 (Sep.): 502-512.
Pagan, G.F. 1981. Formal Specification of Programming
Languages: A Panoramic Primer. Prentice-Hall.
Parnas, D.L. 1985. "Software Aspects of Strategic defense
Systems." American Scientist, Vol. 73, no. 5 (Sep.): 432-440.
Pritsker, A.A.B., and C.D. Pegden. 1979. Introduction to
Simulation and SLAM. Halsted Press, a Division of John Wiley
& Sons, Inc..
Rich, C. 1984. "A Formal Representation for Plans in the
Programmer's Apprentice." M.L. Brodie, J. Mylopoulos, and
J.W. Schmidt (eds) On Conceptual Modeling, Chapter9.
Springer-Verlag.
Simon, H.L. 1986. "Whether Software Engineering Need to Be
Artificially Intelligent. It IEEE Trans. on Software
Engineering, Vol. SE-12, no. 7 (Jul.): 726-732.
Smith, D.R., G.B. Kotik, and S.J. Westfold. 1985. "Research
on Knowledge-Based Software Environments at Kestrel
Institute." IEEE Trans. on Software Engineering, Vol. SE-
11, no. 11 (Nov.): 1278-1295.
Soloway, E. and K. Ehrilich. 1984. "Empirical Studies of
Programming Knowledge." IEEE Trans. on Software Engineering,
Vol. SE-10, no. 5 (Sep.): 595-609.
Tichy, W.R. 1987."What Can Software Engineers Learn from Art-
ificial Intelligence?" Computer, Vol. 20, no. ll(Nov.):43-54.

(Nov.): 1321- 1336.

55-64.

